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Interpretation of QCM(-D) Data: Comparison of
Combined Quartz Crystal Microbalance/Atomic
Force Microscopy Measurements with Finite
Element Method Modeling

Diethelm Johannsmann,*,† Ilya Reviakine,*,‡ Elena Rojas,‡ and Marta Gallego‡

Institute of Physical Chemistry, Clausthal University of Technology, Clausthal-Zellerfeld, D-38678, Germany, and
Centro de Investigacion Cooperativa en Biomateriales, Parque Tecnológico de San Sebastián,
E-20009 San Sebastián, Spain

A quartz crystal microbalance was integrated into an AFM
in order to monitor the adsorption of biomolecules to the
resonator surface with both atomic force microscopy and
microgravimetry. The comparison between the two tech-
niques allows the fractional coverage of the surface, θ, to
be correlated with the frequency shift of the resonator,
∆f. The adsorbed material was ferritin, which is a spheri-
cal protein with a diameter of ∼12 nm. Even at a coverage
below 50%, the protein layer exhibits Sauerbrey-like
behavior, meaning that the magnitude in the frequency
shift |∆f| much exceeds the shift in bandwidth and that
the normalized frequency shift, ∆f/n (n the overtone
order), is similar on the different overtones. The relation
between coverage and frequency shift was found to be
nonlinear. In order to model this situation, we performed
finite element method calculations based on the incom-
pressible Navier-Stokes equation. The comparison be-
tween the model and the experiment suggests that the
deformation of the protein upon adsorption is small. For
low coverage, the volume of the trapped solvent exceeds
the volume of the adsorbate itself. The ratio of the two
decreases with increasing coverage. This is the cause of
the experimentally observed nonlinear relationship be-
tween the surface coverage and frequency shift. Compar-
ing frequency shifts at different overtones, one finds that
∆f/n slightly decreases with overtone order. Such a
behavior is typically attributed to softness. The model
shows that, for the adsorbed spheres, this apparent
softness arises through a rocking motion of the spheres
at the surface instead of the shear deformation. Also, there
is a hydrodynamic contribution (related to roughness) to
the overtone dependence of ∆f/n.

In the past years, the quartz crystal microbalance (QCM) has
seen an impressive broadening of uses.1 Its potential applications
go much beyond microgravimetry.2 Acoustic sensing of viscosity

is now routine.3,4 Effects of viscoelasticity are well understood
for planar layer systems.5-9 As the samples have become more
and more complex, lateral heterogeneity has turned into one of
the biggest hurdles in quantitative modeling. Many biologically
motivated investigations concern adsorbed objects, which are
spatially separated. Examples are vesicles,10,11 proteins,12,13 vi-
ruses,14 or DNA strands.15,16 More generally, adsorption often
proceeds such that the coverage is inhomogeneous at intermediate
times, even if the final adsorbate forms a smooth film. Such
samples, a priori, cannot be treated as if they were homogeneous
films.

While modeling of heterogeneous samples might appear to
be demanding, the general approach is rather clear, when basing
the analysis on the small-load approximation (see eq 1 below).
On a fundamental level, the frequency shift, ∆f, is proportional to
the ratio of (average) stress and speed at the resonator surface.1,5

The well-known formalism of QCM data analysis for planar layer
systems (including the Sauerbrey equation17 and the Gordon-
Kanazawa result3,4) follows straightforwardly from the small-load
approximation, if the stress is calculated with theory of planar
acoustic multilayers. Before elaborating on the extension of the
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formalism to heterogeneous loads, we comment on the existing
approaches dealing with heterogeneity.

Laterally heterogeneous samples can be dealt with on an
analytical basis if the scale of heterogeneity is much larger than
the wavelength of sound, λ. The former case has been investigated
by Flanigan and co-workers.18 These authors studied the contact
between a hemispherical cap of a soft polymer and a resonator.
The radius of contact was much larger than λ.18 Inside the contact
area, the interaction between the resonator and the sample was
assumed to be the same as for the semi-infinite viscoelastic
medium. However, the contact area was smaller than the active
area of the crystal. It turns out that the effect of the finite contact
area can be accounted for by a prefactor, which is the ratio of the
contact area and the resonator’s active area. This formalism works
well both in air and in liquids. There also is a formalism covering
the opposite limit of “point contacts”, that is, well separated
contacts, the size of which is much smaller than λ.19,20 This theory
works well for dry granular media or multicontact interfaces in
air.21

Heterogeneity also is unproblematic for Sauerbrey films in air.
These films are much thinner than λ. For such samples, the
Sauerbrey equation may be applied in an average sense. ∆f is
proportional to the average mass per unit area at the crystal
surface.22

In liquids, to the contrary, heterogeneous samples pose
problems even if they are very thin. Predicting the mean stress
at the resonator surface is a tough problem for all but the simplest
geometries. Complications arise, because the adsorbed objects
interact via hydrodynamics. Hydrodynamic interactions are long-
ranged, and one may not treat an assembly of adsorbed objects
as isolated objects. (This approximation is permitted in air.)
Consider, for example, two spheres adsorbed in near proximity.
The water contained in the gap will to some (unknown) extent
be dragged along by the spheres in their movement. The liquid
will therefore act is if it were part of the adsorbed mass and the
“Sauerbrey mass” will contain a contribution from trapped solvent.
This problem is of paramount importance in the quantitative
interpretation of QCM data.

Even though predicting ∆f for heterogeneous loads in liquids
is difficult, there is an analytical solution for a particular type of
geometry.23 This solution applies to shallow sinusoidal corrugation
waves on the crystal surface. The mathematical effort is consider-
able. Once the solution for a single wave with wave-vector q has
been obtained, one can decompose arbitrary rough surfaces into
their Fourier components, and add up all contributions in order
to obtain the shifts of frequency and bandwidth. Again, this
approach requires that the vertical scale of roughness be much
less than the wavelength of sound (or, in the language of ref 23,
the depth of penetration, δ).

On a pragmatic level, most researchers have in the past treated
heterogeneous layers as effectively homogeneous. Parameters
describing the layer (its thickness and the complex shear

modulus, Gf, or its inverse, Jf) obtained from fitting experimental
data with such models implicitly account for hydrodynamic effects
in one way or another. Effective medium theories are time-honored
and have certainly been successful in many fields of science. They
are an established practice in optics, where a dilute adsorbate often
is treated as a continuous film with a suitably lowered refractive
index. A similar approach is taken in rheology, where dispersions
of solid particles are treated as a homogeneous liquid with an
effective, macroscopic viscosity different from the solvent viscos-
ity.24 In passing, we note that the effective medium theories are
more problematic in acoustics than in optics for the reasons
discussed in ref 25. Interestingly, there is an effective medium
theory of rough adsorbates that explicitly addresses hydrodynam-
ics effects.26,27 The adsorbate is treated as a porous medium,
where the flow of the liquid through the medium is described by
the Brinkman equation. The model contains a “permeability
parameter”, �, describing the openness of the equivalent medium.
We will come back to this model in the results section.

The investigation reported here concerns a geometry (namely,
adsorbed spheres of nanometer dimension), which at this time is
not amenable to a rigorous analytical description. Rather than
simplifying the situation to the extent that analytical equations
would cover it, we resort to numerical modeling.

On the experimental side, shifts of frequency and bandwidth
were acquired as a function of coverage for a model substance,
which was the protein ferritin.28 Ferritin is an iron storage protein
consisting of a protein shell (apoferritin) and an iron core. In
solution, ferritin molecules are nearly spherical, with a diameter
of ∼12 nm. Both forms (ferritin and apoferritin) have been
thoroughly investigated with respect to their adsorption at
surfaces12,29,13,30,31 and intermolecular interactions32-34 and are
offering promise in the developing field of bionanotechnology.35

Quartz crystals were mounted on an atomic force microscope
(AFM).36-38 This allowed the ferritin coverage at the crystal
surface to be determined by AFM in parallel to the QCM
measurements, in situ and in liquid (Figure 1). On the side of
modeling, we employed the finite element method (FEM). The
assumptions entering the modeling are very limited. The modeling
results match the experimental data well (Figure 2).
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EXPERIMENTAL SECTION
Details of sample preparation and the experimental setup are

described in a separate publication.39 Crucial for the success of
these experiments were ferritin purification and cleaning of the
QCM crystal surfaces. Briefly, a commercial equine spleen ferritin
stock solution (Sigma-Aldrich, Madrid, Spain) was purified by size
exclusion chromatography to separate dimers and higher-order
aggregates from the monomers. The purity of the monomers was
established by electron microscopy and dynamic light scattering.
The monomer fraction was used in all experiments described here;
the effect of impurities on the QCM response is discussed in ref
39. The 5-MHz quartz crystals with evaporated gold electrodes
were purchased from Q-Sense (Gothenburg, Sweden). They were
cleaned overnight in 2% SDS solution (Sigma-Aldrich, Madrid,
Spain), rinsed with Nanopure water, and cleaned in a mixture of
ammonium hydroxide and hydrogen peroxide (1:1:1.5 with water;
chemicals were purchased from Scharlab, Barcelona, Spain) at
80 °C for 10 min, rinsed once more with Nanopure water, and
cleaned in air plasma for 12 min in a PDC-002 plasma cleaner set
at “high” (30 W). After cleaning, the crystals were used im-
mediately. After each experiment, the crystals were cleaned in
2% SDS solution overnight and rinsed with copious amounts of
water. It was quite critical for the success of the experiments not
to let the protein dry on the surface. Ferritin monomers were
adsorbed to the cleaned resonator surface (gold) from buffer
solutions of varying protein and salt concentrations to achieve
various surface coverage.

Figure 1 shows typical AFM images obtained in the AFM-QCM
setup. A quartz crystal was mounted in a special homemade holder
on the variable-temperature stage of a Veeco Multimode atomic
force microscope connected to a Nanoscope V controller (Veeco,
Instruments, Santa Barbara, CA). The crystal was connected to a
SA250C network analyzer (Saunders, AZ) and controlled by the
software package QTZ (Resonant Probes GmbH, Goslar, Ger-
many). AFM images were collected in tapping mode. Oxide-

sharpened silicon nitride tips mounted on V-shaped cantilevers
with a nominal spring constant of 0.32 N/m were used to obtain
the images. The ferritin surface coverage was determined by
counting the number of particles in a given area. Figure 2 shows
the shifts of frequency, ∆f, and damping, ∆Γ (where Γ is the half-
bandwidth at half-maximum), versus the coverage thus derived.

Modeling. FEM calculations were employed, using the Mul-
tiphysics Module of the COMSOL software package (COMSOL
GmbH, Göttingen, Germany). The calculation of the frequency
shift, ∆f, builds on the small-load approximation, which states that
∆f is proportional to the stress/speed ratio at the crystal
surface40,41

∆f*

fF
≈ i

π
ZL

Zq
) i

πZq

σ
u̇

(1)

Here ∆f* ) ∆f + i∆Γ is the complex frequency shift, fF is the
frequency of the fundamental, Zq ) 8.8 × 106 kg m-2 s-1 is the

(39) Rojas, E.; Gallego, M.; Reviakine, I. Anal. Chem., in press.

(40) Eggers, F.; Funck, Th. J. Phys. E: Sci. Instrum. 1987, 20, 523.
(41) Johannsmann, D.; Mathauer, K.; Wegner, G.; Knoll, W. Phys. Rev. B 1992,

46, 7808.

Figure 1. AFM images of ferritin monomers adsorbed on the surface of the gold electrodes covering the quartz crystals. The resonator was
integrated into an AFM. The coverage was derived from counts of the number of adsorbed spheres and used as the ordinate in plots of QCM
frequency and bandwidth shifts in Figure 2a. The images are 5 × 5 µm2 and 1 × 1 µm2, respectively. The vertical scale in both cases is 50 nm.
The ferritin packing densities (surface coverages) corresponding to these particular two images were 4% and 30%.

Figure 2. Shifts of frequency and bandwidth versus coverage. Large
symbols: experimental values. Small symbols with lines: results from
FEM modeling with truncated cylinders. The FEM results are
arithmetic means of the results obtained with the flow direction
perpendicular and along the cylinders.

8893Analytical Chemistry, Vol. 80, No. 23, December 1, 2008



acoustic impedance of AT-cut quartz, ZL is the load impedance, σ
is the tangential stress, and u̇ is the lateral speed at the resonator
surface. The load impedance is the acoustic analog of the electrical
impedance, where the latter is a voltage/current ratio, rather than
a stress/speed ratio. Equation 1 holds in a very general sense.
Both the Sauerbrey equation17 and the Gordon-Kanazawa result3,4

are derived from eq 1 by inserting the respective stress/speed
ratios. For instance, the stress at the bottom of a thin film in air
is mostly caused by inertia. It is given by σ ) mf∂

2u/∂t2 ) -ω2mfu
(with mf the mass per unit area and u the amplitude of lateral
displacement) u̇ is equal to iωu. Inserting these relations into eq
1, one straightforwardly recovers the Sauerbrey equation.

Since the frequency shift depends linearly on stress, the small-
load approximation holds in an average sense. For heterogeneous
samples (such as adsorbed proteins or vesicles) one may insert
the area-average of the stress distribution into eq 1. Even for
complicated geometries, this average stress can be computed
numerically. In this way, the small-load approximation opens the
way to study structured materials with the QCM. The small-load
approximation is an essential concept, since it relates shifts of
frequency and bandwidth, on the one hand, with the stress pattern
at the boundary between the resonators and a complex sample,
on the other.

Within the small-load approximation, it is a priori not possible
to distinguish between inertial loading (also termed “mass
loading”), viscous loading, elastic loading, or other types of
interactions. For structured samples, there are no clear-cut
distinctions between these different loads. Inertia, elasticity, and
viscosity all play some role, but any given average stress cannot
be decomposed into contributions from inertia, viscosity, and
elasticity. Also, one may not just relate ∆f to mass and ∆Γ to
viscosity.

Equation 1 has the tangential stress on the right-hand side.
Ignoring the normal stress components is justified in the Ap-
pendix. The appendix derives a more general form the small-load
approximation. This form applies to arbitrary resonators and
arbitrary loads.

We employed the FEM to compute the distribution of tangen-
tial stress for the specific geometry under consideration here
(truncated spheres). Technical details and some steps of validation
of the FEM calculations are provided in the Supporting Informa-
tion. In the following, we discuss some assumptions and the range
of applicability.

Our computational resources only allowed for two-dimensional
FEM calculations. 3D modeling is possible, in principle, but one
cannot afford the appropriate mesh size on a personal computer.
We approximated the adsorbate as a truncated sphere, where a
“sphere” turns into a cylinder, in 2D. For every geometry, we
performed two calculations, where the direction of flow was either
parallel or perpendicular to the cylinders. When making the
comparison with experiment, we used the arithmetic averages of
∆f and ∆Γ as determined for the two directions of flow.

We modeled the ferritin molecule as a sphere of diameter 12
nm, which is consistent with the AFM images (Figure 1) and the
literature.42 The spheres were modeled as continuous media
without internal structure. Molecular details are not covered. For
most calculations, the compression of the sphere at the point of

contact was 1 nm. For comparison, we also investigated adsorbed
hemispheres of the same volume (that is, truncated spheres,
where the compression amounted to 50% of the diameter). Figure
3 shows the geometries and the meshes employed. Periodic
boundaries were applied at the top and the bottom. The geometry
therefore corresponds to an array of cylinders rather than an
individual cylinder. Figure 4 displays contour plots of a typical
solution. Panels a-c concern flow perpendicular to the cylinders.
Panels a and b show contour plots of the speed of flow along the
vertical and the horizontal, respectively. “+” and “-” indicate flow
to the right and to the left. Panel c displays the pressure. Note
the strong peaks of pressure close to the three-phase line. Panel
d concerns flow parallel to the cylinders (that is, perpendicular
to the plane of the paper). For the latter geometry, both the
orthogonal component of the speed and the pressure vanish
identically. The density of the spheres was chosen as F ) 1.6
g/cm3. In the experiment, F depends on the loading with iron.(42) Massover, W. H. Micron 1993, 24, 389.

Figure 3. Employed geometries and meshing. The height of the cells
displayed here was 20 nm, corresponding to a nominal coverage of
60%. The nominal coverage here is the ratio of the sphere diameter
in the undistorted state (12 nm) and the height of the cell. The cell
height was varied in order to emulate variable coverage. The cell has
been cut off on the right-hand side for clarity. It extends to z ) 2 µm,
which is well beyond the penetration depth δ (252 nm at f ) 5 MHz).

Figure 4. Modeling results for the geometry shown in Figure 3a.
Panels a-c show results for a flow perpendicular to the axis of the
cylinder. (a, vertical component of the speed; b, horizontal component
of speed; c, pressure). Panel d shows the speed for a geometry,
where the direction of flow is along the cylinders. In this case, the
model just contains one component of the speed. Both the pressure
and the orthogonal component of the speed vanish identically. “+”
and “-” denote positive and negative values.
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Incomplete loading (which is possible) would result in a somewhat
lower density. For this reason, calculations were also performed
with F ) 1.0 g/cm3, which would correspond to the unloaded case.

Comparison of Figure 4a and d (flow perpendicular and parallel
to the cylinders) shows that that solvent trapping is more efficient
for perpendicular flow. The solvent in-between neighboring
particles moves at a higher speed for perpendicular flow. In the
cases of perpendicular flow, trapping is accomplished by both
viscous coupling and pressure gradients, while there are no
pressure gradients (p ≡ 0) for parallel flow. Still, there is some
solvent trapping, in the latter case as well. The fact that trapping
is more efficient for perpendicular flow is also reflected in the
frequency versus coverage curves displayed in Figures 5 and 6.
The nonlinearity is stronger for perpendicular flow.

A significant assumption concerns stiffness. At this point, we
focus on effects of hydrodynamics, staying away from viscoelas-
ticity. As explained in detail in the results section, the spheres
must be almost glassy (stiffness in the range of 1 GPa) in order
not to show viscoelastic effects. In reality, ferritin presumably is
less rigid, and this will have to be accounted for in more accurate
future models.

The model at this point does not have adaptive meshing. The
sphere surface did not deform. The sphere is a “subdomain” with
certain material parameters. We prove in the Supporting Informa-
tion that this shortcoming does not affect the frequency shifts in

the small-amplitude limit. The amplitude of oscillation used in the
FEM modeling was 0.01 nm.

RESULTS AND DISCUSSION
Figures 5 and 6 show the output of the modeling in terms of

∆f and ∆Γ. Shifts of frequency and bandwidth are displayed versus
coverage. There are two geometries (truncated cylinder and
hemicylinder), two directions of flow (parallel and perpendicular),
and two densities (1.6 and 1.0 g/cm3, corresponding to the iron-
loaded and the unloaded protein). “Coverage” was the ratio of 12
nm (diameter of undeformed ferritin) and the height of the
simulation cell.

The agreement with the experimental data (Figure 2) is quite
impressive, given that there was not much freedom with regard
to the input to the modeling. As shown in the Supporting
Information, the FEM model also reproduces the analytical results
from ref 23 for surfaces with shallow roughness. These findings
lend credibility to the technique, as such.

In accordance with experiment, ∆Γ is much smaller than |∆f|.
Also, the overtone dependence of the normalized frequency shift,
∆f/n, is small. From the experimental side, the layer appears
almost like a Sauerbrey film. Converting the frequency shift at
full coverage to an equivalent Sauerbrey thickness, one finds a
value close to the diameter of the sphere (12 nm). The fact that
the truncated spheres with a compression of 1 nm match the
experimental results much better than the hemispheres does not
come as a surprise. Ferritin is not expected to flatten out at the
surface. The AFM micrographs give no evidence of a large
deformation.

In experimental studies, it is common to convert frequency
shift to adsorbed amount, assuming a linear relationship between
the two. Our results clearly display a nonlinearity. There is
saturation at high coverage. The saturation is weaker for the
higher density because of the mismatch in density between the
adsorbate and the solvent. This finding is very important for
quantitative analysis of QCM data. It shows that ∆f is not
proportional to coverage.

It is instructive to vary the density of the spheres, F, for a fixed
geometry (Figure 7). Within the numerical accuracy, ∆f and the
density of the adsorbed object are linearly related. That entails
the possibility of calculating the amount of trapped solvent. Solvent
molecules taking part in the motion of the adsorbate for hydro-
dynamic reasons are known to contribute to the Sauerbrey mass,
but how much solvent, exactly, is contained in the Sauerbrey mass
for any given geometry is not usually known. For the simulation,
the solvent’s contribution to the Sauerbrey mass corresponds to
the intercept of the ∆f versus F-plot. For instance, this intercept
is -31 Hz for the case displayed in Figure 7c. In Figure 7d, we
went one step further and determined the contribution of the
solvent for different coverages. One can straightforwardly divide
the solvent’s contribution to ∆f by the contribution of the spheres.
This quantity has been termed “fractional trapped solvent” in
Figure 7. The fractional trapped solvent can exceed unity because
it is normalized to the contribution of the spheres (as opposed to
the total frequency shift). Not surprisingly, the fractional trapped
solvent decreases with coverage.43 Also, it is larger for perpen-

(43) A similar result has recently been obtained based on the comparison
between optical and acoustic thickness, Richter, R. P. Private communication.

Figure 5. Shifts of frequency and bandwidth versus coverage for
truncated cylinders (Figure 3a).

Figure 6. Shifts of frequency and bandwidth versus coverage for
hemicylinders (Figure 3b).
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dicular flow than for flow along the direction of the cylinder.
Considering the dilute limit and averaging over the two orienta-
tions of flow, one finds the trapped solvent to be about three times
as large as the volume of the adsorbate itself. At a coverage of
∼50%, this contribution comes out to be ∼1.8. This compares well
with the value of 1.73 that is expected from the volume of solvent
trapped by a random-close-packed assembly of spheres.44 A close
value was also experimentally observed in ref 45.

The focus of this work was on roughness and hydrodynamics.
To this end, the spheres were modeled as “rigid”. We assigned a
(high) complex viscosity (η ) η′ - iη′′ ) to the spheres. More
details on soft spheres are provided in the Supporting Information.
The modulus of the viscosity (η* ) (η′2 + η′′ 2)1/2) was chosen
high enough to ensure that neither ∆f nor ∆Γ depended on the
loss angle or on the exact value of η*. As shown in Figure 8, this
occurred when η* was ∼105 times the viscosity of water ηwat. This
value was used in the calculations leading to the data displayed
in Figures 2, 5, 6, and 7. The ratio of η′ to η′′ (the loss tangent)
was chosen as 0.16. Again, the major part of the calculations was
carried out with spheres that were essentially rigid. The finite
(but very high) modulus was chosen for reasons of computational
convenience and compatibility with those calculations, where the
spheres actually were not rigid (see Figure 8a). Choosing rigid
objects is meant to be a start. Presumably, ferritin molecules are

not rigid in the sense discussed above. It is even doubtful that a
shear modulus (a macroscopic parameter) may be assigned to
ferritin molecules in a meaningful way. Further studies are needed
to account for finite stiffness.

The fact that η*/ηwat had to be so high (∼105) in order to avoid
viscoelastic effects, came as somewhat of a surprise. With
homogeneous films, η*/ηwat ∼ 102 would have been enough to
guarantee Sauerbrey behavior. In other words, effects of viscoelas-
ticity are more pronounced for adsorbed spheres than for
homogeneous films. In the case of homogeneous films, the
contribution of the film’s finite viscosity to the frequency shift is
given by the second term in parentheses in eq 2:

∆f*
fF

≈
-ωmf

πZq (1-
Zliq

2

Zf
2 )) -ωmf

πZq
(1-

ηliq

ηf

Fliq

Ff
) (2)

The indices f and liq denote the film and the liquid, respec-
tively. mf is the mass per unit area of the film. As eq 2 shows,
viscoelasticity affects the frequency shift at a level of (let us say)
1%, if the viscosity of the film is 100 times the viscosity of the
liquid. For spheres, on the other hand, viscoelastic effects are still
very appreciable at η*/ηwat ) 102 (deviation of ∆f from the value
at infinite stiffness still is ∼20%; see Figure 8a). Clearly, there is
a qualitative difference between the two geometries. The differ-
ence goes back to the strong concentration of stress close to the
contact line (Figure 9). Due to the peak in stress at the rim of
the contact, even rather stiff objects move relative to the crystal
surface if the latter oscillates. The detailed analysis shows that
the movement of the sphere mostly amounts to a rocking of the
entire sphere. More, specifically, the vorticity of the velocity is
almost constant inside the spheres, as it should be for a pure
rotation. The bulk of the sphere remains essentially undeformed.
Only the contact zone undergoes oscillatory deformation.

We conclude with remarks on “apparent softness”. The
overtone dependence that was observed experimentally and in

(44) Hinrichsen, E. L.; Feder, J.; Jossang, T. Phys. Rev. A 1990, 41, 4199. (a)
The fractional volume of the adsorbate in a film of height 2R (R the radius
of the spheres) is � ) θVsphere/Vprojected, where Vsphere ) 4π/3R3 is the sphere
volume and Vprojected) 2pR3 is the projected area of a sphere times its height.
Inserting numbers, one finds � ) 0.37. The fractional amount of trapped
solvent is equal to (1-�)/�, which is 1.73.

(45) Macakova, L; Blomberg, E; Claesson, P. M. Langmuir 2007, 23, 12436.

Figure 7. Shifts of frequency (a) and bandwidth (b) versus density
for the truncated sphere. The coverage was 60%, the flow direction
was perpendicular to the cylinder. A strictly linear relation was found
for all other geometries and flow directions, as well. It is consequence
of the fact the viscoelasticity is insignificant. Even though the layer is
rough, it behaves essentially like a Sauerbrey film. Panel c shows
an enlargement of panel a. The intercept of ∆f(F) with the y-axis is
the contribution of the trapped solvent to the Sauerbrey mass. Panel
d shows the contribution of solvent to the Sauerbrey mass (see text).

Figure 8. Shifts of frequency and bandwidth versus viscosity. η* is
defined as η* ) (η′2 + η′′2)1/2, where η′ and η′′ are the real and the
imaginary parts of the viscosity. The loss angle, δL is defined via
tan(δL) ) η′/η′′ . The simulation results do not depend on the sphere’s
viscoelastic properties as long as η* is above 104 m Pa s. The sphere
can be considered as perfectly rigid. The loss tangent is unessential,
as well. All simulations were carried out at η* ) 105 m Pa s. At a
frequency of 5 MHz, a value of η* ) 105 m Pa s corresponds to a
shear modulus of G* ) |iωη*| ) 0.3 GPa.
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the simulations (Figure 10) has negative sign (|∆f| decreases with
increasing overtone order). Such a behavior would typically be
associated with finite softness. This can be understood by
revisiting eq 2:

∆f*
fF

≈
-ωmf

πZq
(1-

ηliq

ηf

Fliq

Ff
)) -ωmf

πZq
(1-

iωηliq

Gf

Fliq

Ff
)

∆f
n

≈
-2πnf F

2mf

πZq
(1- Jf

′′2πnfFηliq

Fliq

Ff
) (3)

Here Jf ) 1/Gf ) 1/(iωηf) is the film’s viscoelastic compliance.
The more compliant the film is, the larger is the overtone
dependence of ∆f/n. Note that Jf″ itself also depends on frequency,
which implies a second, implicit dependence of ∆f/n on n, in
addition to the explicit one.

As discussed above, in FEM modeling, the spheres were
modeled as rigid. For the simulation, therefore, the overtone
dependence cannot be a consequence of softness, it must be of
hydrodynamic origin. To further substantiate this statement, we
compare our data with the results of an effective medium theory
of rough surfaces as provided in ref 26. These authors treat
roughness with the Brinkman equation. This equation describes
flow in porous media. Therefore, the rough surface is treated as
a film of thickness L with permeability �. The thickness of the
film, L, is the vertical scale of roughness. The interpretation of

the permeability, �, for a rough surface is not entirely clear.
Therefore, at this point, we do not discuss the interpretation of
this parameter, focusing on the ability of the Brinkman model to
reproduce the overtone dependence of the normalized frequency
shift. Evaluating the stress at the bottom of this “film” and applying
the small-load approximation, one finds

∆f*
fF

≈ i
πZq

√iωFη-
ωFdeff

*

πZq

deff * ) L
�H

2 q1
2 -

1
W

1
�H

2 q1
2{ 2q0

q1
[cosh(q1L)- 1]+ sinh(q1L)}

q0 )�iωF
η

) 1+ i
δ

q1
2 ) q0

2 + �H
-2,

W) q1cosh(q1L)+ q0sinh(q1L)

(4)

In the limit of �Ηf 0, the parameter deff* is equal to L and the
layer looks like to Sauerbrey film. Provided that the free
parameters are chosen suitably, the Brinkman film reproduces
the experimental results. Figure 10 shows a comparison. The
coverage was 40%, L ) 38 and �Η ) 21 nm, respectively, were
chosen to give reasonable agreement with the experimental data.
Indeed, the Brinkman model predicts a decrease of |∆f/n| with
overtone order, although the film is rigid. This overtone depen-
dence must be caused by hydrodynamics. This finding cor-
roborates our statement that hydrodynamics induces an overtone
dependence of the Sauerbrey mass, which might be misinter-
preted as a consequence of softness.

The overtone dependence observed in the experiment is
stronger than that predicted by the FEM calculations. In part, this
is a consequence of a finite compliance of the protein molecules.
Just as the parameters derived from fitting QCM data with the
effective media models (eq 2) will contain hydrodynamic contribu-
tion, those derived from the application of the Brinkman model
will contain a contribution from the elastic properties of the
adsorbed materials. In both cases, the physical meaning of
the respective model parameters is vague. As a side remark, the
presence of protein aggregates also induces an overtone depen-
dence, which was shown to have a hydrodynamic origin as well.39

Despite the extensive purification procedures employed, the
presence of some aggregates is unavoidable, especially in the case
of experiments aimed at obtaining high surface coverage.

Summarizing the remarks on softness, adsorbed spheres
appear softer than corresponding films of the same material for
two reasons. First, the spheres may rock back and forth. At large
amplitude, the rocking motion would turn into rolling. Clearly,
this displacement pattern is impossible for films. Second, the flow
of solvent around the spheres generates an apparent softness, even
if the spheres are perfectly rigid.

CONCLUSIONS
We find good agreement between experimental results on

frequency versus coverage for adsorbed ferritin, on one hand, and
the corresponding FEM model, on the other. Since there is little
choice in the input parameters to the FEM calculation, the model
is predictive. In acoustic terms, the adsorbate looks like a
Sauerbrey film even at coverages much below 50%. The relation

Figure 9. Local tangential stress onto the left-hand side wall of the
simulation cell as shown in Figure 3a. The stress peaks at the three-
phase lines.

Figure 10. Normalized frequency shift, ∆f/n, versus overtone order,
n. The coverage in this particular case was 40%. The model assumed
perpendicular flow for the truncated sphere. The dashed line was
calculated with eq 4, assuming a thickness of L ) 38 nm and a
permeability of � ) 21 nm. The magnitude of ∆f/n decreases for all
data sets. For planar layers, such an overtone dependence of the
apparent Sauerbrey mass would be interpreted as an indication of
softness. In the case of the FEM model and the Brinkman-based
model, it is of entirely hydrodynamic origin.
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between coverage and frequency shift is nonlinear in the sense
that ∆f levels off at high coverage because of the trapped solvent.
At low coverage, the volume of the trapped solvent is about three
times as large as the volume of the adsorbate. Softness has a
stronger effect for adsorbed spheres compared to continuous films
because the spheres may rock back and forth on the resonator
surface. Also, there is a hydrodynamic effect leading to an apparent
softness (that is, a dependence of the Sauerbrey mass on the
overtone order).

APPENDIX
Small-Load Approximation in Tensor Form. In the main

text, the load impedance is treated as a scalar quantity. It is the
ratio of shear stress (in the x-z plane) to the velocity of the crystal
surface, which is along x. Technically, one might view ZL as the
xzx-component of the third rank tensor defined as

σij ) ZL,ijkiωuk (5)

Clearly, there are stress components other than the xz-
component if the sample is of some complex nature. For the
geometry given here, one can argue that all components other
than the xz-component would average out on the macroscopic scale
for reasons of symmetry. Still, the question is of broad relevance,
and we take the opportunity to formulate the small-load ap-
proximation in a more general form. The result of this calculation
applies to resonators of arbitrarily complex shape and arbitrary
samples.

Consider the unloaded resonator first. Is characterized by a
density distribution F(r) and a stiffness tensor cijkl(r). Let the
displacement field be uk(r). A resonant mode is the solution to
the eigenvalue problem

1
F

∇ · c : (∇ X u))-ω2u (6)

Here “ · ” and “:” denote contraction and double contraction,
respectively. X is the outer product. In coordinate form, 3Xu is
given as ∂uk/∂xl. -ω2 is the eigenvalue and u is the eigenfunction.
The left-hand side could be also written as D̂u with D̂ ) 1/F (3 · c:
3X...) an operator.

Now let there be a load at the surface of the resonator. The
corresponding eigenvalue problem reads as

1
F

∇ · c : (∇ X u)- δ(r- S)1
F

n̂ · iωZL · u)-(ω2 +∆(ω2))u

(7)

The second term on the left-hand side describes the accelera-
tion induced by the load at the surface, S. δ(r-S) is the Dirac δ
function. The second term only applies to locations at the surface.
The stress exerted by the sample is iωZL ·u. Again, ZL now is third-
rank tensor. The stress is transported along the surface normal,
n̂. The minus sign enters because the stress is exerted onto the
crystal by the sample. The term 1/F n̂ · iωZ L (ω) ·u therefore is
an acceleration, as is the right-hand side. ∆ω2 ) 2ω∆ω is the
shift of the eigenvalue induced by the perturbation, where the
perturbation is the small load. ∆ω2 can be straightforwardly
calculated by perturbation theory. The formalism is well-known

from quantum mechanics, where the operator typically is the
Hamiltonian. It is readily adapted to partial differential operators,
as shown below.

Subtraction of eq 6 from eq 7 yields

δ(r- S)1
F

n̂ · iωZL · u)-∆(ω2)u) 2ω∆ωu (8)

As in quantum mechanics, we multiply with u from the left
and integrate over the volume:

∫
V

δ(r- S)1
F

u · n̂ · iωZL · u dV) 2ω∆ωu∫
V

u·u dV (9)

We normalize the displacement field, ∫Vu ·u dV evaluates to
unity. Also making use of the Dirac δ, we find

∆f) ∆ω
2π

) i
4π∫

S

1
F

u · n̂ · ZL · u dS (10)

Equation 10 is the small-load approximation in tensor form.
In the following, we show that eq 10 reduces to eq 1 for

thickness shear resonators. In this case, the displacement field
has only one component (ux(z)), given by

ux(z)) 1
N

sin(πz
dq

) (11)

Here dq is the thickness of the crystal and N is a normalization
constant. The origin of the z-scale is in the center of the crystal.
Requiring ∫Vu ·u dV ) 1 leads to

ux(z))� 2
Aqdq

sin(πz
dq

) (12)

Here Aq is the area of the crystal. Inserting this result into eq
10 yields

∆f) i
4π

2
FAqdq

∫
S

x̂ · ẑ · ZL · x̂ dS

) i
4π

2
FAqdq

AqZL,xzx

) i
π

fF
Zq

ZL,xzx

(13)

x̂ and ẑ are unit vectors. Since ZL,xzx is laterally homogeneous,
the integration over the surface yields the area of the surface as
a prefactor. The last transformation made use of the relation

Fdq )Fλ
2
)

Fvq

2fF
)

Zq

2fF
(14)

Here λ is the wavelength of transverse sound, νq is the speed
of sound, and Zq ) Fνq is the acoustic impedance. Identifying ZL

from eq 1 with ZL,xzx from eq 13, one sees that the small-load
approximation in tensor reduces to eq 1. Further, eq 13 shows
that only shear stress in the xz-plane contributes to the frequency
shift.
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Again, the significance of eq 10 goes much beyond the proof
that only shear stress matters in the calculation of ∆f for the
conventional QCM. It can be used to calculate the complex
frequency shift of any acoustic resonator (including, for instance,
microcantilevers,46 wine glass resonators,47 and suspended bars48)
from the stress/speed ratio (in its tensor form) at the resonator
surface.

Even for the standard QCM, the tensor form of the small-load
approximation allows a statement on two familiar problems, which
are roughness and flexural modes. Suppose that the surface
normal at some location does not point along z, but rather has
components (nx,nx,nz), where nx

2 + ny
2 + nz

2 ) 1. Let the
displacement be entirely along x. Equation 10 then reads

∆f) i
4π∫

S

ux
21
F

(nxZL,xxx + nyZL,xyx + nzZL,xzx) dS

) i
4π∫

S

ux
21
F(nx

σxx

ux
+ ny

σyx

ux
+ nz

σzx

ux
) dS

) i
4π∫

S

ux
1
F

(nxσxx + nyσyx + nzσzx) dS

(15)

Considering flexural constributions, suppose that the surface
is perfectly flat, but that the displacement has some vertical
component, uz, due to bending. The displacement pattern still is
normalized such that such that ∫Vu ·u dV ) ∫Vux

2 + uz
2 dV ) 1.

Equation 10 then reads

∆f) i
4π∫

S

1
F(ux

2σxz

ux
+ uz

2σzz

uz
+ uzux(σxz

uz
+

σzz

ux
)) dS

) i
4π∫

S

2
F

(uxσxz + uzσzz) dS
(16)

Of course, the mixed case (a rough crystal surface undergoing
both tangential and normal displacements) can also be treated
by eq 10. We stop providing explicit equations here.
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