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Supporting Information 

Below we provide details of the simulation.  We used the Multiphysics Module of the 

COMSOL software package (COMSOL GmbH, Göttingen, Germany).  Within the FEM 

approach, one models the adsorbate as a continuous medium with given density and 

viscoelastic constants.  The adsorbed protein does not have internal structure.   

The computational resources available to us only allowed for two-dimensional 

simulations.  In principle, 3D calculations are possible with the COMSOL Multiphysics 

package.  However, the results depended on the details of the meshing at all mesh sizes which 

we could afford.  Because of the 2D nature of the simulation, the geometry corresponds to 

adsorbed cylinders, rather than spheres.  The cylinders may either be oriented perpendicular 

(Fig. 4a-c) or parallel (Fig. 4d) to the direction of flow.  We did not study inclined 

orientations.  When comparing experimental results and modeling results, we use arithmetic 

averages calculated for perpendicular and for parallel direction of flow.  

A further simplification concerns periodicity.  We applied periodic boundary conditions at 

the top and bottom in Figs. 3 and 4.  The periodicity is of some influence.  We checked by 

enlarging the cell and placing more than one cylinder into the enlarged cell.  This geometry 
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was still periodic, but the unit cell was larger and contained a pseudo-random arrangement of 

spheres.  Varying the locations of the spheres did affect the results.  In terms of numerical 

accuracy, such large cells again challenge the computing power of a normal PC and therefore 

entail compromises with regard to the resolution of the mesh.  For this reason, we base the 

analysis on a strictly periodic geometry.   

With regard to the shape of the adsorbed molecule, we tested two geometries, which were 

a truncated cylinder (Fig. 3a) and a hemicylinder (Fig 3b).  In the first case, the sphere 

diameter was 12 nm, and the compression at the surface was 1 nm.  In the second case, the 

diameter as 15.2 nm.  This value was chosen such that the volume of the two is the same (in 

3D).  For cylinders aligned perpendicular to the direction of shear, we employed the 2D 

steady-state incompressible Navier-Stokes model (Fig. 4a–c).  Along the surface normal, the 

cell was 2 µm long, which amounts to 8 times the penetration depth of the acoustic shear 

wave at 5 MHz.  The penetration depth, δ, is 252 nm on the fundamental.  Neutral boundary 

conditions were applied at the domain boundaries on the right, the top, and at the bottom.  The 

left hand side oscillated with an amplitude of u0 = 10-2 nm.  More technically, the boundary 

was assigned a fixed “velocity”, where the velocity was defined as iωu0.  With regard to the 

mesh size, the default settings were modified in one respect, which was the maximum mesh 

size at the three-phase line (or, in 2D, the three-phase point) between the water, the adsorbate, 

and the wall.  This was set to 0.001 nm. 

The steady-state incompressible Navier-Stokes model of the COMSOL Multiphysics 

package is geared to steady (rather than oscillatory) movement.  However, all variables 

(including speed and pressure) can be made complex.  The model readily produces oscillating 

shear waves if the term -iωρv (ρ the density and v the local speed) is inserted for the body 

force in the subdomain settings.  COMSOL always plots the real parts of speed and pressure 

(Fig. 4) when outputting the solution.  In order to visualize the imaginary part, one uses an 
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imaginary speed of motion at the left-hand domain boundary (thereby multiplying the entire 

solution with a factor of i).   

Fig. 9 in the main text shows the tangential stress at the crystal surface.  Typical for 

contacts between mechanically dissimilar materials, there is a sharp peak of stress close to the 

three-phase line.  The integrated tangential force onto the left-hand side of the cell was 

calculated in the Post Processing Mode.  Division by the height of the cell yields the stress, σ.  

This stress is inserted into the small-load approximation 1,2  

i iL

F q q

Zf
f Z Z

∗Δ σ
≈ =

π π & Eq. 1 u

which then leads to Δf and ΔΓ.  The values displayed in Figs. 2, 5, 6, and 7 of the main text 

are differences in Δf and ΔΓ between a crystal loaded with a liquid and a particle, on the one 

hand, and a crystal loaded with the liquid only, on the other.  The latter situation produces a 

frequency shift of -716 Hz (relative to the bare crystal in the absence of liquid).  Given that 

the data shown in Figs. 2, 5, 6, and 7 are differences of large numbers, the requirements with 

regard to accuracy of the simulations are quite severe. 

The water phase was assumed to have a density of 1 g/cm3 and a viscosity of η = 1 mPa s.  

The particle as assumed to have a viscosity of η* = (η'2 + η'’2 )1/2 = 100 Pa s.  The particle is 

viscoelastic (η = η' - iη''), where the loss tangent (tan δL  = η'/η'') was chosen as 0.16.  The 

exact value of the particle’s modulus does not matter as long as the particle is much stiffer 

than the liquid.  As discussed in the results section of the main text, effects of finite stiffness 

are stronger for adsorbed spheres than for planar films.  The modeling of particles with a 

stiffness comparable to the stiffness of water (such as vesicles) is outside the scope of this 

work, although it certainly deserves attention.   
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For the simulation of shear flow along the cylinder direction, we used the COMSOL’s 

steady-state diffusion model.  The speed in this case only has a single non-trivial component, 

directed perpendicular to the plane of the paper in Fig. 4d.  The speed (or, more precisely, the 

momentum) obeys a diffusion equation, where the role of the diffusivity is taken by the 

kinematic viscosity, η/ρ.  In order to recover oscillating shear waves, the term –iωc (c the 

“concentration”, equivalent to momentum) must be inserted for the reaction rate in the 

subdomain settings.   

We checked for a dependence of Δf and ΔΓ on oscillation amplitude and found it to be 

completely insignificant (fractional changes in Δf and ΔΓ below the numerical 

reproducibility) at amplitudes below 1 nm (Fig. S1).  This is consistent with the recent 

experimental work on the effect of oscillation amplitude on the QCM response from the 

adsorbing polymer microspheres.3  There are two mechanisms, by which a high oscillation 

amplitude might influence the results.  Firstly, the nonlinear term in the Navier-Stokes 

equation (ρ(v⋅∇)v, with ρ the density and v the speed) will produce a Bernoulli pressure.  

Secondly, the simulation at this point does not a employ deformable mesh.  More technically, 

we use Lagrangian coordinates, as opposed to Euler coordinates.  As a consequence, the 

domain boundaries do not adapt to the flow.  At small amplitudes, this artifact is irrelevant 

because the shear angle, γ, is small.  The shear angle is of the order of the amplitude of 

oscillation (10-2 nm) divided by the penetration depth (~ 100 nm, depending on overtone 

order).  At high amplitudes (> 10 nm, see Fig. S1), the artifact is noticeable.  The above 

remarks evidently only concern the FEM calculation.  In experiment, other effects (like a 

detachment of the spheres from the surfaceError! Bookmark not defined.) might come into play. 

In the absence of adsorbed particles, the simulation reproduces the Gordon-Kanazawa 

result (Δf = −fF(ρωη/2)1/2/(πZq), with ρ the density and η the viscosity) within 0.1 %.  For 

homogenous films, the Sauerbrey equation (Δf = −fFωmf/(πZq) with mf the areal mass density 
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of the film) is reproduced to within 0.1%.  The film resonance (eq. 7 in Ref. 4) is reproduced 

within 1% (Fig. S2).   

A more challenging test concerns shallow surface corrugation gratings as treated by 

Urbakh and Daikhin.5  These predictions are reproduced to within 0.5 Hz.  Fig. S3 shows the 

geometry and the solution of the flow profile.  A rigid sheet (G = 3 GPa) with an average 

thickness of 21 nm was placed onto the resonator surface.  The interface between this layer 

and the liquid was corrugated, where the sinusoidal corrugation assumed in Ref. 5 was 

approximated by a third order Bezier line.  The shifts of frequency and bandwidth were 

referenced to the same sheet with no corrugation.  Fig. S4 shows Δf and ΔΓ versus amplitude 

of corrugation.  The dashed line is the analytical result for the frequency shift on the 

fundamental, which is 
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Here h is the amplitude of corrugation and L is its periodicity.  ϕ is the angle between the 

direction of corrugation and the direction of flow.  We used ϕ = 0, which implies a flow 

perpendicular to the grooves.  In the limit of small-amplitude corrugation, Δf is as parabolic 

function of h.  The overtone dependence is so weak that it would be hardly distinguishable in 

the plot.  ΔΓ is below 0.04 Hz, in accordance with the analytic result.  

In the following we show that the artifacts introduced by a stationary mesh vanish in the 

small amplitude limit.  The COMSOL code in its most simple version does not adapt the 
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mesh to the flow.  As a consequence, the domain boundaries remain immobile, which clearly 

is unphysical for deformable objects.   

Let the solution to the problem with fixed boundaries be called (u, p) with u the velocity 

field and p the pressure.  Let the solution of the problem with moving boundaries be called 

(u + δu, p + δp).  Let the scalar field of viscosity be called η for fixed boundaries and η + δη 

for the moving boundaries.  δη only is nonzero close to the boundaries, where – depending on 

whether boundaries move or not – the viscosity at this specific locations may change upon 

particle deformation.  We employ Euler coordinates, which do not move with the medium.  

δη is not small.  δu and δp, on the other hand, are small, as we show below.   

u and p are the solution to the partial differential equation  

( ) ( )

( ) 2

+

i +

u u u u p
t
u u u u u p

∂
ρ ρ ⋅∇ + ∇ ⋅ η∇ − ∇ =

∂
ωρ ρ ⋅∇ + ∇η⋅∇ + η∇ − ∇ =

Eq. 3 
0

Note that the gradients may be sharp at the boundaries.  We assume that the boundaries have a 

finite (albeit small) width, such that all derivatives remain well-defined.  Now let the 

boundary itself undergo an oscillatory movement.  The scalar field of the viscosity, η(r) then 

turns into the modified field (η+δη)(r, t), where the difference is nonzero only in those 

regions, which are covered by the movement of the boundary.  In response to the shift in 

viscosity, the vector field u(r) and the pressure field p(r) turn into modified fields (u+δu)(r) 

and (p+δp)(r).  There is second change in the differential equation, which concerns the time 

derivative of speed.  Since the boundary now moves with the fluid, the nonlinear term u⋅∇u 

vanishes.  There is no artificial acceleration due to particles crossing a boundary.  (We work 

at low Reynolds numbers, where the nonlinear them in the bulk is negligible.  The nonlinear 

term only matters, if material crosses a boundary.)  The modified differential equation 

therefore reads. 
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Eq. 4 ( ) ( ) ( )
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Subtracting Eq. 3 from Eq. 4 yields 

( ) ( )2

2

i u u

u u S

ωρδ + η + δη δη∇ δ + ∇ η + δη ⋅∇δ − ∇δ

= −δη∇ − ∇δη⋅∇ = Eq. 5 

This is an inhomogeneous partial differential equation in (δu, δp).  The term on the right-hand 

side is a source term, abbreviated S.  The solution to Eq. 5 typically is calculated by means of 

the Greens formalism.  One calculates a three-component Greens function G = (Gux, Guy, Gp) 

obeying 

Eq. 6 

The Greens function is related to the Oseen tensor.  For the following argument, it is not 

necessary to actually calculate G.  One can see that the changes in the fields δu and δp vanish 

in the small-amplitude limit without explicitly writing them down.  It suffices to realize that G 

exists and is unique.  Once G has been found, one can – in principle – calculate the solution 

(δux, δuy, p) by an integration over the source term 

u p
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∫  Eq. 7 

Importantly, the source term is only nonzero in those regions, which are covered by the 

moving boundaries.  The volume of this region scales with the amplitude of oscillation, u0.  

The integrand contains the vector field u(r), and therefore also scales with amplitude.  The 

source term therefore scales as u0
2 (area of integration times value of integrand) and so does 

the solution on the left-hand side.   

The viscous stress at the interface is given by  

( )= x x
xz

u u
z

∂ + δ
σ η

∂
 

Eq. 8 
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In the small-amplitude limit, the second term is negligible compared to the first.  It scales 

as u0
2, whereas the first scales as u0.  The correction induced by the moving boundaries may 

therefore be ignored.
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Figure Captions 

Fig. S1: Dependence of Δf and ΔΓ on oscillation amplitude for a truncated sphere.  The 

coverage was 60%, the density was 1.6 g/cm3.  The default setting for the amplitude was 

10-2 nm.  The direction of flow was perpendicular to the direction of the cylinders. 

Fig. S2: Δf and ΔΓ versus film thickness for a film with a viscosity of 9.87 – i 1.56 mPa s.  

The data for the 13th overtone is presented. Film resonance (Ref. 4) is clearly reproduced. 

Fig. S3: Geometry underlying the test of the analytical result from Ref. 5 for shallow 

sinusoidal waves.  a): Vertical component of flow field.  b): Horizontal component of flow 

field c): Pressure.  The solid film with a corrugated surface had an average thickness of 21 nm 

and a stiffness of 3 GPa. 

Fig. S4: Shifts of frequency and bandwidth for a surface with sinusoidal corrugation as shown 

in Fig. S3.  The x-axis is the vertical amplitude of the corrugation.  The wavelength is 20 nm, 

and the direction of flow is perpendicular to the grooves.  The dashed line is the analytical 

result from Ref. 5. 
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Fig. S1 
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Fig. S3 
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