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Stable Equidistant Step Trains during Crystallization of Insulin
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Bunching of growth steps plagues layerwise crystallization of materials in laboratory, industrial, and
geological environments, and theory predicts that equidistant step trains are unstable under a variety of
conditions. Searching for an example of stable equidistant step trains, we monitored the generation and
spatiotemporal evolution of step trains on length scales from 100 nm to 1 mm during the crystallization
of insulin, using atomic force microscopy and phase-shifting interferometry. We show that near-
equidistant step trains are generated by single and cooperating screw dislocation. The lack of step-
step interaction and the overall transport-controlled growth regime further regularize the step train and
ensure the stability of the obtained equidistant arrangement.
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Since the individual steps do not interact, the step bunches
decay as they move along their pathway [15,16]. With

imaging did not affect the morphology of the imaged part
of the surface, or the rate of the monitored processes. This
During growth of crystalline materials by the spread-
ing of layers, equidistant step trains often lose stability
and break into bunches of steps interspersed with bands of
low step density [1]. In the resulting material, the step
bunches leave trails of higher defect density and, in this
way, lower its quality and utility [2]. On the other hand, it
has recently been suggested that the capability to control
step bunching could be utilized for the generation of step
patterns for use as nanostructure templates [3].

Several microscopic factors for the loss step train
stability and step bunch formation have been considered:
(i) step-step interactions due to competition for supply via
surface diffusion [4,5], (ii) interactions due to overlap-
ping elastic fields of the steps [6], (iii) asymmetry for
incorporation from top and lower terraces [4,7], (iv)
asymmetry due to solution flow [8] or electric current
[9], and (v) impurity effects [10].

The step bunching instability in solution crystalliza-
tion can also be addressed from the viewpoint of macro-
scopic kinetics, with the equidistant step train viewed as
the steady state and the bunches representing the kinetic
fluctuations occurring after stability loss [11]. Within this
model, a process comprising two coupled stages, such as
transport through the solution and incorporation into the
steps, is unstable provided that one of the stages follows
a nonlinear kinetic law. The factors considered in the
microscopic approaches have been viewed among the
sources of nonlinearity of the second stage of the macro-
scopic formalism—incorporation into steps [12].

An investigation of the step bunching instability dur-
ing the crystallization of the protein lysozyme revealed a
strong step-step interaction through overlapping surface
diffusion supply fields, which provides for heavy step
bunching under a broad range of experimental conditions
[13,14]. A similar investigation with ferritin revealed
step bunches, which are generated due to the strongly
nonlinear two-dimensional nucleation of new layers.
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both proteins, it was shown that overlapping of the bulk
solution supply fields of the steps only provides for a weak
interaction that does not induce step bunching [16,17],
and that changing the experimental conditions to regimes
where the control of the kinetics is shifted either to
the transport or to the incorporation stage reduces step
bunching [14–16,18]. The results with ferritin suggest
that, in systems with weakly or noninteracting steps
controlled by transport, the stable growth mode is that
via equidistant step trains [15,16]. However, with ferritin
this stable regime is not realized: Step bunches are pro-
duced because of the nonlinear step generation and can-
not dissipate over the relatively short ( � 0:5 mm) step
pathways.

The objective of this Letter is to demonstrate that
equidistant step trains are stable and constitute the domi-
nant growth mode in systems where the steps (i) propa-
gate without interaction and (ii) are generated by a linear
kinetic process. We found that the crystallization of the
protein insulin, which underlies the production of several
diabetes medications [19], is such a system. In addition,
we found that further stabilization of the equidistant step
trains is provided by the transport control of the growth
process.

Rhombohedral (R3) crystals of porcine insulin grew on
12-mm Teflon-coated metal disks [20] from solutions
containing up to 1 mgml�1 insulin, 0:05M sodium ci-
trate, 0:005M ZnCl2, 0% and 15% (v=v) acetone, 0:001M
HCl, at pH � 7:0 and temperature T � 27 �C [21]. The
solution supersaturation was calculated as �C� Ce�C�1

e ,
where C is insulin concentration and the solubility at T �
27 �C is Ce � 0:15 mgml�1 at zero acetone concentra-
tion, and Ce � 0:35 mgml�1 at 15% acetone (Bergeron
et al., unpublished results). Images of the crystal surface
were collected in situ during growth using atomic force
microscopy (AFM) in tapping mode [22]. The scanning
and tapping parameters were adjusted so that continuous
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was verified by varying the scan sizes and the time
intervals between scans. For details on similar observa-
tions with apoferritin, see [23].

Growth of {10 0} (or f1 0 1 1g) insulin crystal faces
proceeds by spreading of layers, which are typically
generated by screw dislocations. In some instances, on
crystals consisting of several blocks, new layers were
generated by two-dimensional (2D) nucleation at the
block boundaries. 2D nucleation was likely facilitated at
these locations by the lattice misfit in a direction perpen-
dicular to the monitored face [24]. Figure 1(a) shows a
single screw dislocation producing a four-sided polygonal
spiral, in which the straight segments are parallel to the
respective crystal edges. The sides of resulting hillock are
not related by any of the symmetry elements belonging to
the R3 crystallographic group of the crystal. The dislo-
cation source in Fig. 1(b) features both left- and right-
handed screw dislocations. In all studied cases ( � 40),
single and multiple dislocation sources produced near-
equidistant step trains. As with other systems [25], the
density of the steps generated by single dislocations fol-
lowed a weaker than linear increase with insulin concen-
tration, in accordance with theoretical expectations of
a � lnC law [25,26]. The density of the steps generated
by multiple dislocations was not an apparent function of
the insulin concentration, similar to Ref. [27].

Figures 2(a)–2(c) illustrate the high stability of the
equidistant step trains—they were preserved at all loca-
tions on the crystal surface, near and far (at �300 	m)
from the dislocation source, and in a wide range of super-
saturations. Figure 2(a) shows that, in contrast to previous
observations with other systems [28], the equidistant step
trains remain stable even as the steps pass over obstacles,
such as dislocation outcrops.

To explore if any of the microscopic factors (i)–(v)
above affect the kinetics of the individual growth steps,
we monitored the spatiotemporal evolution of a step train
generated by irregular 2D nucleation on a grain boundary
and exhibiting variable step density. We disabled the slow
scanning axis of AFM (for details and tests of this imag-
FIG. 1. Generation of new layers by screw dislocations.
(a) Single dislocation produces hillock. (b) Four dislocations,
indicated with black arrows, work in cooperation to produce a
hillock, with three dislocations, indicated with white arrows,
on hillock side.
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ing mode, see [16,19]). Figure 2(d) shows a pseudoimage
obtained in this mode, in which the vertical axis repre-
sents time. The slope of a step trace is reciprocal to the
step velocity, and the local step density is determined
from the distances between the step traces at a given time.
The data in Fig. 2(d) reveal that closely spaced steps move
with the same velocity as widely spaced ones, and that
steps preceded by a closely positioned neighbor move
with the same velocity as steps closely followed by an-
other step. The first observation indicates that the steps do
not compete for supply from the surface, that elastic
interactions or impurity effects do not slow down or
accelerate the steps, and that competition for supply
from the solution bulk does not affect the step motion.
The second observation indicates that, correspondingly,
there is now asymmetry in the incorporation into a step
from its top and lower terraces. The high stability of the
equidistant step trains is illustrated by the fluctuations in
interstep distances in Fig. 2(d), likely due to surface
supersaturation fluctuations—in contrast to lysozyme
[14], they do not trigger a cascade of step bunches.

For insight into the step dynamics over longer times
and distances, we applied phase-shifting interferometry
[30]. While inferior in spatial resolution to AFM, inter-
ferometry is nonintrusive and allows in situ monitoring of
FIG. 2. Step trains on the surface of insulin crystals. (a)–(c)
Equidistant step trains (a) after passing over a dislocation
outcrop, �C� Ce�C�1

e � 0:8, (b) near a grain boundary, �C�
Ce�C

�1
e � 0:8, (c) far from the dislocation group, which

produces the monitored step train, �C� Ce�C
�1
e � 3:5.

(d) Spatiotemporal evolution of step train at �C� Ce�C�1
e �

2:5. A pseudoimage recorded by disabling the slow scan axis so
that the vertical axis represents time. Time increases from top
to bottom; steps move from left to right. The slope of the step
trace equals the reciprocal step velocity v�1.
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the kinetics and microscopic morphologies across entire
macroscopic facets. The phase-shifting algorithm em-
ploys five-image sequences captured within 1 s and pro-
cessed to reconstruct the surface morphology with a
depth resolution of 5 nm across a field of view of 1	
1 mm2 (for further details, see [15,30]). Time traces of
growth rate and local slope, proportional to step density,
are recorded at selected locations on the crystal surface
with time resolution 1 s. Figure 3(a) shows a phase-
wrapped image representing the morphology of an insu-
lin crystal face with size 230 	m at supersaturation �C�
Ce�C�1

e � 0:3. Two major dislocation hillocks are seen
near the right top part of the surface. Figures 3(b) and
3(c) show time traces of growth rate and local slope
recorded at a location far from the dislocation source
shown in Fig. 3(a). Figures 3(b) and 3(c) show that growth
kinetics are steady, and step density only undergoes mi-
nor fluctuations.

The spatial characteristics of step patterns are revealed
by the height profiles in Fig. 4(a), taken along the direc-
tion of step propagation around the location far from
the layer source shown in Fig. 3(a). Subtracting average
surface slope, we obtain the differential profile shown
in Fig. 4(b). It shows no step bunches, in agreement
with the steady kinetics revealed by corresponding time
traces in Figs. 3(b) and 3(c). Thus, the interferometry
characterization supports the conclusion that the growth
FIG. 3. Interferometric characterization of the surface mor-
phology and its evolution during growth at �C� Ce�C

�1
e � 0:3.

(a) Phase-wrapped interferograms. Lighter color codes for
greater height; the discontinuities in gray scale correspond to
height difference of 0:12 	m. (b),(c) Time traces of normal
growth rate in (b) and local slope in (c), recorded at location,
indicated by 	 in (a), far from step sources, indicated with
arrows.
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of insulin crystals is stable and proceeds via equidistant
step trains.

To explain the stability of step trains against the small
fluctuations evidenced by AFM and interferometry data,
we evaluate the kinetic Peclet number Pek � �p=D,
where � is the step kinetic coefficient of the insulin, p
is slope,  is the characteristic diffusion layer thickness,
and D is insulin diffusivity. Using � � 6	 10�3cm s�1

(Reviakine et al., unpublished), p � 1:2	 10�2 from,
e.g., Fig. 3(c), D � 8	 10�7 cm2 s�1 [31], and choosing
� 2	 10�2 cm (a low estimate, stemming from a di-
rect determination and an evaluation in simulations of the
convective-diffusive transport [32]), we get Pek 
 1:7.
Since Pek is the ratio of the characteristic rates of surface
kinetics �p to that of transport in the solution D=,
Pek > 1 is viewed as an indication of transport-
controlled growth [12,33].

In a transport-controlled regime, a fluctuation of, say,
higher step density would dissipate. Indeed, areas of high
density of noninteracting steps are also areas of local
growth rate maxima and, in a transport-controlled re-
gime, supersaturation minima. As another consequence
of the transport-controlled regime, the solute diffusion
field near the interface lags behind the step pattern that
generates it. Thus, a step train segment of high step
density moves into an area of higher supersaturation,
while the trailing segments of lower step density find
themselves in an area of lower supersaturation. The steps
trailing behind the step bunch are prevented from catch-
ing up with the bunch and increasing its height. A self-
consistent analytical solution has shown that this results
in dissipating step bunches and stabilization of the equi-
distant step trains [34].

From the general perspective of the macroscopic ki-
netics viewpoint, insulin crystallization is an example in
which the lack of sources of nonlinearity in the surface
FIG. 4. Quantification of surface morphology by phase-shift-
ing interferometry around the locations far from dislocation
source shown in Fig. 3(a). (a) Height profiles along direction of
step propagation. (b) Corresponding differential profiles ob-
tained by subtraction of average surface slope.
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kinetics (unsteady layer generation, or step-step interac-
tions), combined with having only one of the two coupled
processes control the overall rate of growth, provides for a
stable steady state of the growth kinetics, i.e., equidistant
step train.

In the terms of the microscopic stability models, the
results discussed in this Letter, in the context of the
previous results with lysozyme and ferritin, show that if
(i) growth steps are generated by a process the rate of
which is a linear or weaker function of the local super-
saturation, (ii) during their motion they do not interact,
and (iii) transport of material from the solution is slower
than incorporation at the steps, then no step bunching
instability evolves and equidistant step trains are the
stable kinetic state of the surface.
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